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Abstract 

We compare the accuracy of confidence intervals (CIs) and tests of close fit based on the 

RMSEA with those based on the SRMR.  Investigations used normal and non-normal data 

with models ranging from p = 10 to 60 observed variables. CIs and tests of close fit based on 

the SRMR are generally accurate across all conditions (even at p = 60 with non-normal data). 

In contrast, CIs and tests of close fit based on the RMSEA are only accurate in small models. 

In larger models (p  30), they incorrectly suggest that models do not fit closely, particularly 

if sample size is less than 500. 
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Assessing fit in structural equation models:  

A Monte-Carlo evaluation of RMSEA vs. SRMR confidence intervals and tests of close fit 

Structural equation modeling refers to a general set of techniques used to estimate 

systems of equations, possibly involving latent variables. When the model under 

consideration does not involve constraints on the mean structure, the model parameters can 

be estimated by covariance structure modeling, that is, by minimizing a discrepancy function 

between the sample covariance matrix and the covariance matrix implied by the model. More 

specifically, let  denote the true and unknown population covariance matrix, and let 

0 ( )   denote the covariance matrix specified by the null hypothesis, where  denotes the 

q vector of model parameters to be estimated from the data. In covariance structure modeling, 

 is estimated by minimizing a discrepancy function 0( , )F S  where S denotes the sample 

covariance matrix. Different discrepancy functions can be employed to this aim. In this paper 

we focus on the normal theory maximum likelihood discrepancy function 

  1
0 0 0( , ) ln ln tr     S S SMLF p , (1) 

where p denotes the number of variables being modeled. This is a discrepancy function 

suitable for models in which all the outcomes are continuous.  

After a model has been fitted, it is necessary to assess the size of its misfit, that is, the 

magnitude of the discrepancy between the (unknown) data generating process and the model 

being fitted (i.e., the severity of the misspecification). This is critical in applications, as 

inferences drawn from poorly fitting models can be misleading  (Saris, Satorra, & van der 

Veld, 2009). In covariance structure modeling, assessing the size of a model’s misfit amounts 

to estimating the discrepancy between   and 0  using an unstandardized, standardized, or 

relative effect size of model misfit (Maydeu-Olivares, 2017a). Effect sizes of model misfit 

are population parameters which can be estimated from the data.  
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Unstandardized effect sizes of overall misfit express the magnitude of a model's misfit 

in the original units of the sample statistics used to fit the model. In covariance structure 

modeling, an unstandardized effect size of a model's overall misfit is the Root Mean Square 

Residual (RMR) 

  201
ij ij

i j

RMR
t 

     , (2) 

where ij denotes the population covariance between variables i and j (or variance if i = j) and 

0 ij  denotes the population covariance (or variance) under the fitted model, and 

( 1) / 2t p p   denotes the number of non-redundant population variances and covariances. 

The RMR can be approximately interpreted as the average population residual covariance; 

however, the magnitude of a covariance is in general uninterpretable. As a result, it is unclear 

whether the magnitude of a particular value of the RMR, (e.g. RMR = 3), is large or small. 

 A popular unstandardized effect size of model misfit is the Root Mean Squared Error 

of approximation (RMSEA: Browne & Cudeck, 1993; Steiger, 1989, 1990) 

 0( , ) 


F
RMSEA

df
  (3) 

where 0 0( , )F F    denotes the discrepancy between  and 0 . Thus, the RMSEA adjusts 

the discrepancy between  and 0 by the degrees of freedom of the model, df = t – q. The 

definition of the RMSEA given in (3) reveals that the RMSEA depends on the discrepancy 

used to estimate the model. There is not a unique population RMSEA. Rather, there are as 

many population RMSEA parameters as discrepancies can be used to estimate the model. For 

instance, when the ML fitting function (1) is used to estimate the model, the population 

RMSEA is 

 
 1

0 0

1

ln ln tr    


p
RMSEA

df
 . (4) 
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All possible RMSEA population parameters are unstandardized effect sizes of overall 

model misfit. This means that their magnitude is uninterpretable and they can only be judged 

in reference to cut-off values. Is an RMSEA = .3 a large or a small size of model misfit? We 

believe it is a small size of model misfit because Browne and Cudeck (1993, p. 144) pointed 

out that in their opinion, an RMSEA ≤ .08  “would indicate a reasonable error of 

approximation” and that they “would not want to employ a model with RMSEA greater than 

.1”. But because the RMSEA is an unstandardized effect size, any population value (e.g. 

0.05) has a different meaning depending on the structure and size of the model (Chen, 

Curran, Bollen, Kirby, & Paxton, 2008). See Savalaei (2012) for a thorough discussion of this 

issue.  

In contrast, the magnitude of standardized and relative effect sizes of overall misfit 

can be meaningfully interpreted without the need of cut-off values. Standardized effect sizes 

overcome the problem of uninterpretability by expressing the magnitude of a model's misfit 

in standardized units. Relative effect sizes of overall misfit overcome the problem by 

expressing the magnitude of a model's misfit relative to the magnitude of the misfit of a 

baseline model. 

A standardized effect size of overall misfit suitable for covariance structure models is 

the Standardized Root Mean squared Residual (SRMR): 

 
 20

1



  


 
 ij ij

i j ii jj

SRMR
t

. (5) 

The SRMR can approximately be interpreted as the average population standardized residual 

covariance. Another standardized effect size of overall misfit suitable for covariance structure 

models is the Correlation Root Mean squared Residual (CRMR): 

  201



   
  ij ij

i j

CRMR
t p

, (6) 
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where ij denotes the unknown population correlation between variables i and j and 0ij  

denotes the population correlation under the fitted model. Standardized effect sizes of overall 

misfit are clearly preferable to unstandardized effect sizes as the magnitude of the former can 

be readily interpreted. For instance, a CRMR  = . 01 can be approximately interpreted as the 

average population residual correlation of the model being fitted. This average value will be 

judged by any researcher as very small. In contrast, an CRMR = .20 will be judged as 

unacceptably large.   

 Turning now to relative effect sizes of overall misfit, a suitable relative effect size of 

overall misfit is  

 
 1 21

0tr

p



  , (7) 

which can be described as a weighted population coefficient of determination of the fitted  

model (Steiger, 1989, p. 84). 1  can also be described as the population counterpart of the 

Goodness of Fit Index (GFI) (Maiti & Mukherjee, 1990; Steiger, 1989). An alternative 

relative effect size of model misfit is (Bentler, 1990; Zhang & Savalei, 2016) 

 01
B

F

F
     (8) 

where 0 0( , )F F     and and ( , )B BF F    denotes the discrepancy between   and some 

baseline model B  (usually the independence model).   is the population Comparative Fit 

Index (CFI: Bentler, 1990). 

 In practice, researchers are to choose an effect size of overall model misfit and 

estimate a confidence interval for it. Using a parameter drift assumption, asymptotic 

statistical theory has been put forth (Browne & Cudeck, 1993; Steiger, 1989, 1990)  that 

enables users to obtain a confidence interval for unstandardized effect sizes such as the 

population discrepancy function value (F0), the non-centrality parameter ( 0 /F N  , where 
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N denotes sample size), the Cross-Validation Index  (CVI: Browne & Cudeck, 1993; Cudeck 

& Browne, 1983), or the RMSEA. These methods also enable obtaining confidence intervals 

for a relative effect size of overall misfit, the population Goodness of Fit Index (GFI) of 

Equation (7) (Maiti & Mukherjee, 1990; Steiger, 1989). It does not seem possible to apply 

these methods to obtain confidence intervals for the population Comparative Fit Index (CFI) 

of Equation (8) if the independence model is used as baseline. This is because the use of this 

model almost certainly violates the parameter drift assumptions used to derive confidence 

intervals using asymptotic methods (for a discussion, see Bentler, 1990). To date, the only 

effect size of overall misfit that is widely used in applications is the RMSEA.  

 Recently, Maydeu-Olivares (2017a) has provided statistical theory for obtaining 

confidence intervals for standardized effect sizes of overall misfit, such as the SRMR and the 

CRMR, as well as to perform tests of close fit (i.e., whether the population parameter is 

smaller than some arbitrary value). However, although the use of the SRMR/CRMR over the 

RMSEA to assess the effect size of model misfit is preferable on substantive (interpretation) 

grounds, if coverage rates for the RMSEA are substantially more precise than for the 

SRMR/CRMR, use of the RMSEA may be preferable on statistical grounds. It is therefore 

necessary to compare the accuracy of statistical procedures to obtain confidence intervals and 

tests of close fit for the SRMR/CRMR and the RMSEA. This is the aim of this paper.   

The remainder of this paper is organized as follows: First, we summarize statistical 

theory for obtaining confidence intervals (CIs) for the RMSEA and the SRMR/CRMR. Both 

normal and non-normal outcomes are considered, as non-normal outcomes are the norm 

rather than the exception in applications. Next, we provide an example in which we obtain 

CIs for the RMSEA and the SRMR/CRMR to clarify our discussion. We provide the 

computer code and data used in this example as supplementary materials to this article. Then, 

we report the results of an extensive simulation study comparing the accuracy of confidence 
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intervals, as well as of tests of close fit, for the RMSEA and SRMR/CRMR. All results were 

obtained using the lavaan package in R (R Development Core Team, 2015; Rosseel, 2012).  

We conclude with a discussion of the findings and suggestions for applied researchers.  

The Root Mean Square Error of Approximation (RMSEA) 

 Covariance structure models can be estimated using a variety of discrepancy 

functions, 0( , )F S , between the sample covariance matrix and the covariance matrix 

specified by the null hypothesis. One such function is the normal theory maximum likelihood 

discrepancy function given in Equation (1). When the fitted model is correct, for some 

combinations of discrepancy functions and distributional assumptions, the distribution of the 

estimated discrepancy function multiplied by sample size, ˆNF , can be approximated 

asymptotically using a chi-square distribution. This is the so-called chi-square test statistic in 

the structural equation modeling literature. Under the same conditions, ˆNF  can be 

approximated asymptotically using a non-central chi-square distribution when the fitted 

model is slightly incorrect (i.e. under parameter drift assumptions; for details on the 

conditions that must be met for ˆNF to follow a non-central chi-square distribution see 

Browne & Cudeck, 1993; Maydeu-Olivares, 2017a). When ˆNF  can be approximated 

asymptotically by a non-central chi-square distribution, the population RMSEA can be 

estimated using the sample RMSEA (Steiger, 1989; Browne & Cudeck, 1993) 

  ˆ
max ,0

NF df
RMSEA

N df

 
  

 
 , (9) 

and confidence intervals for the population RMSEA can be obtained using a non-central chi-

square distribution. For instance, when the model is estimated using the ML fitting function 

(1), ˆNF  is the likelihood ratio test statistic. For normally distributed data, the likelihood ratio 
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test statistic follows asymptotically a chi square distribution when the model is correctly 

specified and follows a non-central chi-square distribution under parameter drift assumptions.  

Confidence intervals for the RMSEA 

Provided ˆNF  can be well approximated in large samples using a non-central chi-

square distribution under parameter drift assumptions, a (100 – )% confidence interval (CI) 

for the RMSEA is given by  

 
ˆ ˆ

;
L U

N df N df

 
 
   

. (10) 

L̂  and Û  are the solution to 

  2
ˆ ˆ; , 1 2F NF df L


   ,     and  2

ˆ ˆ; , 2F NF df U


  ,  (11) 

respectively, where  2 ; ,F df


   is the non-central chi-square distribution function with df 

degrees of freedom and non-centrality parameter .  

Alternatively, we may wish to test whether the fitted model is a good enough 

approximation to the population covariance matrix. That is, we may be interested in the 

following test of close fit 0 0 1 0:  vs. :H RMSEA RMSEA H RMSEA RMSEA  , where 

0 0RMSEA   is an arbitrary value of the population RMSEA. In this case, the asymptotic p-

value for the test of close fit is 

  2

2
0

ˆ1 ; ,p F NF df N df RMSEA


    . (12) 

Estimation of the RMSEA with non-normal data 

 When ˆNF does not follow asymptotically a chi-square distribution under the null 

hypothesis, the sample RMSEA (9) is not a suitable estimator of the corresponding 

population parameter. For instance, when the model is estimated using unweighted least 
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squares under normality assumptions, (9) cannot be used to estimate the population RMSEA 

as ˆNF  does not follow a chi-square distribution when the model is correct. 

When data are not normal, the normal theory maximum likelihood discrepancy 

function (1) can still be used as it yields consistent estimates of the model parameters. 

However, standard errors (SEs) computed under normality are incorrect. Also, ˆNF  no longer 

follows asymptotically a chi-square distribution. Asymptotically correct SEs (the so called 

‘robust’ SEs) can be obtained under the asymptotically distribution free (ADF) assumptions 

set forth by Browne (1982). ADF assumptions just require that all eighth-order moments of 

the distribution of the data are finite.  

Under ADF assumptions, the most widely used goodness of fit test statistics when the 

normal theory maximum likelihood discrepancy function (1) is used are the mean corrected 

likelihood ratio test statistic 1 ˆˆsT c NF , and the mean and variance adjusted likelihood ratio 

test statistic Ta, as described in Satorra and Bentler (1994). When the mean corrected test 

statistic is used, Li and Bentler (2006, see also Brosseau-Liard et al., 2012) showed  that the 

ML population RMSEA (4) is to be estimated using  

  ˆ ˆ
max ,0

 
  

 
s

F c
RMSEA

df n
 , (13) 

instead of simply by applying equation (9) with 1 ˆˆsT c NF  in lieu of ˆnF . That is, when the 

mean corrected statistic Ts is used, the use of  

 
2 max ,0s

s
T df

RMSEA
N df

 
   

 , (14) 

is incorrect, as it does not consistently estimate the population RMSEA, it estimates a 

different parameter. To the best of our knowledge, no theory has been proposed for how to 

estimate (4) when a Satorra-Bentler mean and variance adjusted test statistic is used. In the 

absence of statistical theory, structural equation modeling programs compute  
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  max ,0a
a

T df
RMSEA

N df

 
   

 , (15) 

but this formula is likely to be a poor estimate of the population ML RMSEA as no statistical 

theory supports its use.  

 The Standardized Root Mean Squared Error (SRMR) and Correlation Root 

Mean Squared Error (CRMR) 

 Let se  be the t vector of standardized residual covariances with elements 
ˆ ij ij

ii jj

s

s s
, 

asymptotic covariance matrix  s . Maydeu-Olivares (2017a) showed that regardless of the 

discrepancy function and distributional assumptions used, an asymptotically unbiased 

estimate of the population SRMR (5), henceforth called SRMRu, is 

  
1

ˆmax tr( ),0
ˆ




 


s s s

u sSRMR k
t

e e
,       where 

 

2

2

ˆ ˆtr( ) 2ˆ 1
4

 
 


s s s s

s

s s

k
e e

e e
. (16) 

Although the population SRMR is unique and its unbiased estimator (16) is unique, different 

estimates will be obtained depending on the discrepancy function used to estimate the model 

and on whether normality or ADF assumptions are used.  

 Structural equation modeling software compute a sample counterpart of the 

population SRMR (5), henceforth SRMRb, 

   2
ˆ1 ij ijs s

b
i j ii jj

s
SRMR

t t s s

  
  e e

,. (17) 

However, this is a biased estimate of the population SRMR, and the magnitude of the bias 

increases as sample size decreases (Maydeu-Olivares 2017a).   

 Similarly, an unbiased estimate of the CRMR, henceforth CRMRu, is 
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  
1

ˆmax tr( ),0
ˆ




 




r r r

u rCRMR k
t p

e e
,    where 

 

2

2

ˆ ˆtr( ) 2ˆ 1
4

 
 


r r r r

r

r r

k
e e

e e
. (18) 

In (18), re  denotes the t – p vector of residual correlations with elements ˆij ijr , and r  

denotes its asymptotic covariance matrix. The sample CRMR, henceforth CRMRb, is 

   21
ˆr r

b ij ij
i j

CRMR r
t p t p 


   

  e e
, (19) 

and this is also a biased estimator of the population parameter (Maydeu-Olivares, 2017a). 

Confidence intervals for the SRMR and CRMR 

Confidence intervals for the SRMR and CRMR population parameters (as well as 

tests of close fit) are obtained via the unbiased estimates of these parameters and their 

asymptotic standard errors using a reference normal distribution. In particular, in large 

samples, a (100 – )% confidence interval for the SRMR can be obtained using  

     Pr ( ) ( ) 1       u u u uSRMRSRMR z SE SRMR SRMR z SE SRMR , (20) 

where SE() denotes asymptotic standard error.  

 If a test of close fit based on the SRMR is desired, for example, of the type 

 0 0 1 0:  vs. : SRMR SRMR SRMRH SRMRH , (21) 

where 0 0SRMR  is an arbitrary value of the SRMR, p-values are obtained using 

1 ( ) p z , where ()  denotes a standard normal distribution function and 




0

SE( )


 u

u

SRMRSRMR
z

SRMR
.   Analogous procedures may be used with the CRMR. 

The asymptotic standard error for the SRMRu and CRMRu are (Maydeu-Olivares, 

2017a) 

 
2

2 tr( ) 2
SE( )

2

  



s s s s

u s
s s

SRMR k
t

e e

e e
, 

2
2 tr( ) 2

SE( )
2( )

  



r r r r

u r
r r

CRMR k
t p

e e

e e
. (22) 
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A numerical example: Fitting a factor model to the short form of the Social Problem 

Solving Inventory-Revised (SPSI-R) 

  The short form of the SPSI-R (D’Zurilla, Nezu, & Maydeu-Olivares, 2002) is a 25 

item questionnaire measuring five attributes, each by 5 items. Each item consist of five 

ordered categories and for this analysis, they were treated as continuous. We fitted a 

confirmatory five-factor model to the Spanish normative sample of this questionnaire 

(Maydeu-Olivares et al., 2000) matching the underlying theoretical model. Sample size is 

741. Maximum likelihood estimation was used as implemented in the lavaan package in R (R 

Development Core Team, 2015; Rosseel, 2012). Maximum item kurtosis was 1.6; maximum 

item skewness was 1.1. Therefore, the model could be estimated under normality 

assumptions. In so doing, we obtained X2 = 902.68 on 265 df. The sample RMSEA (9) 

estimate was .057. The 90% CI for the RMSEA population parameter  (4) was (.053; .061), 

and the p-value for testing RMSEA  .05 was <.01. The sample (biased) SRMR (17)  was 

.061.  

For comparison, we also estimated the model under ADF assumptions. The estimated 

mean adjusted X2 (Satorra & Bentler, 1994) was  775.37, the sample RMSEA (14) was .051 

and the 90% CI for the RMSEA (4) was (.047; .055). The p-value for testing RMSEA  .05 

was .34. The sample (biased) SRMR (17) is unaffected by the distributional assumptions used 

to estimate the model as only parameter estimates enter in its computation. Therefore, the 

sample SRMR estimate under ADF assumptions is also .061.  

We note that although the data appears normally distributed, whether normality or 

ADF assumptions are used to assess the goodness of fit has a substantial effect on the results. 

For a model of this size and at this sample size, Maydeu-Olivares’ (2017b) results suggest 

that even when data is normally distributed the mean corrected X2 computed under ADF 

assumptions yields more accurate results than the X2 computed under normality. Therefore, 
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the results obtained using the mean corrected X2 should be used. However, in this case, we 

should estimate the RMSEA using (13), and not (14), obtaining RMSEA = .055, CI = (.050; 

.059). There is a substantial difference when the correct formula is used to estimate the 

RMSEA using the mean corrected X2 in this application.  

Using lavaan, we can also obtain the unbiased estimates (16) and (18) as well as CIs 

for the population SRMR and CRMR parameters (5) and (6). The unbiased estimate of the 

SRMR (and CRMR) depends on distributional assumptions. Under normality assumptions, 

the unbiased estimate of the SRMR  is .058, 90% CI = (.052, .063); under ADF assumptions, 

SRMRu = .057, 90% CI = (.050, .063).  Also, under normality assumptions, CRMRu = .060, 

90% CI = (.054, .066); under ADF assumptions, CRMRu = .059, 90% CI = (.052, .066).   

To what extent can the estimated SRMR, CRMR and RMSEA confidence intervals be 

trusted? How accurate are they? Put differently, if a test of close fit is of interest (i.e., whether 

the SRMR, CRMR or RMSEA parameters are smaller than some arbitrary value), how 

accurate are the p-values of these tests? These are the main questions we try to address in this 

paper.  

Previous research on the accuracy of CIs and tests of close fit for the RMSEA and 

SRMR/CRMR 

A number of simulation studies has examined the performance of point estimates, 

confidence intervals and tests of close fit using the RMSEA under maximum likelihood 

estimation (Curran, Bollen, Chen, Paxton, & Kirby, 2003; Fan, Thompson, & Wang, 1999; 

Hu & Bentler, 1998; Kenny, Kaniskan, & McCoach, 2015; Kenny & McCoach, 2003; Nasser 

& Wisenbaker, 2003; Nevitt & Hancock, 2000). However, with few exceptions they focus on 

normally distributed data, and the maximum number of observed variables considered was 

15. For instance, Curran et al. (2003) examined the accuracy of CIs and p-values for tests of 

close fit for the RMSEA with normally distributed data. CIs for the RMSEA were found to be 
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adequate for sample sizes larger than 200. However, only models with 8 and 15 variables 

were considered. Brosseau-Liard et al. (2012) described how to estimate the population 

RMSEA with non-normal data and examined the coverage of the RMSEA in models 

involving p = 12 variables. None of these results are applicable to our example involving p = 

25 observed variables. Kenny and McCoach (2003) examined the behavior of the sample 

RMSEA in larger models (up to p = 30) but they did not examine CIs or tests of close fit. 

In empirical research, often it is of interest to model a larger number of variables. Finally, as 

non-normal data are prevalent in many applications, researchers increasingly rely on robust 

standard errors and corrected goodness of fit test (Satorra & Bentler, 1994) –and there is 

evidence that they perform better than methods based on normality assumptions, even when 

data are normal (Maydeu-Olivares, 2017b).  

A number of simulation studies have also examined the performance of the sample 

SRMR (Beauducel & Wittmann, 2005; Fan & Sivo, 2005, 2007; Garrido, Abad, & Ponsoda, 

2016; Hu & Bentler, 1998, 1999) and the statistic has received praise as one of the most 

effective goodness of fit statistics (e.g., Hu & Bentler, 1998, 1999). Previous research on the 

accuracy of CIs and p-values for tests of close fit for the SRMR/CRMR is limited to Maydeu-

Olivares (2017a) who investigated a few conditions involving normal as well as non-normal 

data. Only models with p = 8 observed variables were considered. CIs for the SRMR/CRMR 

were found to be adequate except when population model misspecification was small 

(population SRMR = .025) and sample size was small (N < 100).  

 Simulation study 

We performed an extensive simulation study to investigate the accuracy with which  

confidence intervals for the population RMSEA, SRMR, and CRMR can be estimated when 

a structural equation model for continuous outcomes is estimated by maximum likelihood 

estimation. The population parameters under consideration are given by Equations (3), (5), 
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and (6). We also investigated the accuracy for p-values of tests of close fit for these 

parameters as applied users often report those instead of confidence intervals.  

We simulated multivariate normal data with mean zero and a covariance structure 

conforming to an independent cluster model with two correlated factors with the same 

number of indicators per factor. In order to introduce non-normality, the continuous data 

were discretized into seven categories coded 0 to 6. Since the number of categories is large, 

it is appropriate to treat the discretized data as continuous when conducting data analysis 

(Muthén & Kaplan, 1985; Rhemtulla, Brosseau-Liard, & Savalei, 2012). Model 

misspecification was introduced by fitting a one-factor model (i.e., by ignoring the 

multidimensional structure of the data). We set the population values for all factor loadings 

to 0.70 and all error variances to 0.51. For both factors, their factor variances were set to 

one. The population values of the inter-factor correlations varied according to different 

levels of model misspecification as described below. 

Simulation Conditions 

 The simulation conditions were obtained by manipulating four variables:  

1. Sample size. Sample sizes included 100, 200, 500, and 1,000.  

2. Model size. Model size refers to the total number of observed variables (p), 

including small (p = 10), medium (p = 30), and large (p = 60) models.  

3. Degree of non-normality. Three sets of skewness and (excess) kurtosis values were 

examined:  skewness = 0.00, (excess) kurtosis = 0.00 (i.e. normal data); skewness = 0.00, 

kurtosis = 3.30; skewness = -2.00, kurtosis = 3.30. The item level non-normal data with 

desired skewness and kurtosis were generated by discretizing continuous data through 

selected thresholds (DiStefano & Morgan, 2014; Maydeu-Olivares, 2017b; Muthén & 

Kaplan, 1985). The threshold values used for each combination of skewness and kurtosis can 
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be found in Table 1. The computation of the population skewness and kurtosis is described 

in Maydeu-Olivares, Coffman and Hartmann (2007).  

4. Degree of model misspecification. Three levels of model misspecification were 

obtained by manipulating the interfactor correlation in the population model: small ( = 0.9), 

medium ( = 0.8), and large ( = 0.7). 

For every possible condition, the population values of the RMSEA, SRMR and 

CRMR were computed and values are reported in Table 1. Across conditions, population 

RMSEA values ranged from 0.023 to 0.103; population SRMR values ranged from 0.018 to 

0.068; and population CRMR values ranged from 0.020 to 0.069. It is worth noting that the 

population RMSEA decreased as the inter-factor correlation increased, but also as model 

size increased (see Savalei, 2012 for more discussion). In addition, the population values for 

the non-normal conditions were slightly smaller than those obtained from normal data.  

----------------------------------- 

Insert Table 1 around here 

----------------------------------- 

In total, the simulation study consisted of a crossed design with 108 (4 × 3 × 3 × 3) 

conditions. For each simulated condition, 1,000 replications were generated using the  

simsem package in R (Pornprasertmanit, Miller, & Schoemann, 2012; R Development Core 

Team, 2015).  

We investigated the effect of sample size because statistical theory for obtaining 

confidence intervals and p-values for tests of close fit is asymptotic. Therefore, results 

should be accurate if sample size is large enough, but it is necessary to investigate how large 

is “large enough” as applied researchers often use rather small samples. We also considered 

models ranging up to 60 observed variables to reflect conditions typically found in test 

development applications. In addition, observed data is often non-normal and we generated 

non-normal data with the skewness and kurtosis typically found in item level data. Finally, 
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we considered a variety of values for each of the population parameters within the range 

typically reported in applications.  

Data Analysis 

A one factor model was fitted in all cases with ML estimation using the lavaan 

package in R (R Development Core Team, 2015; Rosseel, 2012). All replications converged 

for all conditions. More specifically, for each replication, the population RMSEA, SRMR 

and CRMR were estimated under both normality and ADF assumptions. The 90% and 95% 

confidence intervals (CIs) were estimated for each parameter. The RMSEA was estimated 

under normality assumptions using (9) and under ADF assumptions using (13), that is via 

the Satorra-Bentler scaled test statistic. The SRMR and CRMR were estimated using (16) 

and (18). Finally, for each condition, we computed the p-value of a test of close fit in which 

the RMSEA and SRMR/CRMR equal its population value.   

The outcomes of SRMR and CRMR were very similar to each other; therefore, we 

only report results for SRMR. However, all results observed for the SRMR are also 

applicable to the CRMR.  

Results 

Table 2 provides the average of RMSEA and SRMRu across replications along with 

the population values. We have highlighted in this table those conditions where a relative bias 

less than 10% was obtained. We see in this table that when data is normally distributed, both 

the RMSEA and SRMRu provide, on average, estimates close to their population values, 

regardless of whether the estimates are obtained under normal theory or ADF assumptions. 

When non-normality was present, the estimates under normality assumptions could produce 

upwardly biased mean estimates, especially when sample size was small (e.g. kurtosis = 3.0, 

skewness = -2.0, N = 100). However, we note that the normal theory SRMRu is more robust 

than the normal theory RMSEA (i.e., bias is smaller) in the presence of non-normal data.  
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In general, both the ADF RMSEA and SRMRu provide unbiased estimates across all 

levels of model misspecification. However, the sample SRMRu converges faster to its 

population value than the sample RMSEA, especially when model size was large. That is, 

often a larger sample is needed for the sample RMSEA to reach a similar level of bias than 

for the SRMRu. The use of SRMRb currently provided in many SEM software packages 

should be avoided, as it is severely biased upwards even in samples of size 1,000 (suggesting 

that the model fits more poorly than it does). We provide in Table A.1 in the supplementary 

materials to this article the average value SRMRb for each of the conditions of our study. We 

see in this table for instance that when kurtosis = 3, skewness = 2, p = 60, and population 

SRMR = .022, SRMRb = .043 on average when N = 500, but it reaches an average of .087 

when N = 100.  In contrast, the average of the ADF SRMRu in these conditions is .022 and 

.028, respectively.   

Tables 3 and 4 summarize the coverage rates for 90% and 95% confidence intervals 

around the population RMSEA and SRMR. For 90% CIs, coverage rates between 85% and 

95% were considered acceptable and were highlighted in Table 3. We considered coverage 

rates between 90% and 99% for 95% CIs as acceptable and were highlighted in Table 4. 

Also, we have underlined in these tables the conditions in which coverage rates for the 

RMSEA are more accurate than for the SRMR. Similar patterns were observed across 90% 

and 95% CIs.  

We see in these tables that, not surprisingly, CIs obtained under normality 

assumptions performed poorly with non-normal data. Under ADF assumptions, the coverage 

rates of CIs for the RMSEA were only acceptable when the model size was small. When 

fitting medium (p = 30) to large (p = 60) models, the coverage rates of RMSEA were 

noticeably lower than their nominal rates, even in large samples (N = 1,000). On the other 

hand, the CIs of robust SRMR could produce acceptable coverage rates across most 
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simulation conditions, including cases where the number of observed variables was very 

large (p = 60). Note that the only situations where CIs for the RMSEA seemed to perform 

better than for the SRMR involved very small levels of model misspecification (ρ = 0.9) in 

small models (p = 10).  

Table 5 summarizes the results of tests of close fit. More specifically, this table 

depicts the empirical rejection rates at a 5% significance level of tests of the RMSEA and 

SRMR being equal to their population values. These ranged from 0.023 to 0.103 for the 

RMSEA, and from 0.018 to 0.068 for the SRMR. We considered a statistic to be reasonably 

accurate if its rejection rate ranged between 0.01 and 0.10 at the 5% significance level; those 

cases are highlighted in Table 5. Note that for the SRMR, the 5% empirical rejection rates 

were equivalent to the non-coverage rates using 95% CIs (i.e. one minus the corresponding 

95% converge rates in Table 4). This relationship does not hold for the RMSEA. Table 5 

shows that for both the SRMR and RMSEA, the empirical rejection rates obtained under 

normality were close to its nominal rates only when small models (p = 10) were fitted to 

normal data. On the other hand the SRMR under ADF assumptions consistently yielded 

empirical rejection rates close to the nominal level (5%). The robust RMSEA, however, 

generally rejected the model too often as the number of observed variables reached 30 and 

beyond. For instance, for normally distributed data and p = 30, empirical rejection rates at the 

5% significance level for testing whether RMSEA ≤ .054 where .16 at N = 500 but .51 at N = 

100. In contrast, empirical rejection rates at the 5% level for testing whether the equivalent 

SRMR ≤ .044 where .08 at both N = 500 and N = 100.  

Discussion and conclusions 

A great deal of research has been devoted to assess the degree of misfit of structural 

equation models, and applied researchers use an array of goodness of fit indices to this 

purpose. Goodness of fit indices are sample statistics used in conjunction with some fixed 
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cutoff values that have been proposed in the literature (e.g., Hu & Bentler, 1999). If a 

goodness of fit index meets the recommended cutoff values, the model is retained (Barrett, 

2007; Marsh, Hau, & Wen, 2004); otherwise, it is rejected. There are several problems with 

these practices (Maydeu-Olivares, 2017); for instance: a) the parameter being estimated (the 

effect size of model misfit) is often not described, nor is care taken so that the sample statistic 

consistently estimates the population parameter, b) the sampling variability of the sample 

statistic (the goodness of fit index) is ignored.  

 In this paper we distinguish between effect sizes of model misfit and goodness of fit 

indices. Effect sizes of model misfit are population parameters that capture the discrepancy 

between the fitted model and the data generating process for which statistical theory is 

available, thus enabling the construction of confidence intervals, and, if of interest, statistical 

tests (Maydeu-Olivares, 2017). We reserve the term goodness of fit index to refer to sample 

statistics used to adjudge model fit disregarding their sampling variability and without 

referencing any population parameter. Good overviews of the array of goodness of fit indices 

that have been proposed in the literature are Bollen and Long (1993) and Marsh, Hau and 

Grayson (2005). In applications, the only effect size of model misfit that is widely used is the 

RMSEA. 

A drawback of the RMSEA is that it is an unstandardized effect size. As a result, 

population values of the RMSEA cannot be substantively interpreted. Their magnitude can 

only be judged in reference to cut-off values. But precisely because the RMSEA is an 

unstandardized effect size, any population value (say 0.05) has a different meaning depending 

on the structure and size of the model: For instance, most researchers would consider a one 

factor model to be a close approximation to a two factor model whose factors correlate .9. 

Fewer researchers would consider a one factor model to be a close approximation when the 

two factors correlate .8. However, the first combination of true and fitted model yields a 
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population RMSEA of .042 when p = 10 and data is normal, but the second combination 

yields a population RMSEA of .037 when p = 60, kurtosis = 3 and skewness = -2 (see Table 

1). Thus, a smaller population RMSEA does not necessarily mean a more closely fitting 

model. To overcome this problem Maydeu-Olivares (2017a) has advocated the use of 

standardized effect sizes of model misfit such as the Standardized Root Mean Squared Error 

(SRMR) or the Correlation Root Mean Squared Error (CRMR). Unlike the RMSEA, the 

SRMR or the CRMR can be substantively interpreted and therefore can convey the degree of 

misfit without the need of cut-off values. Statistical theory is available to obtain confidence 

intervals for the SRMR and CRMR parameters, as well as to perform tests of close fit (i.e., 

whether the population parameter is smaller than some arbitrary value). In this article we 

report the results of an extensive simulation study comparing the accuracy with which CIs for 

these population parameters can be obtained, using both normal and non-normal data.  

 Our simulation results show that across almost every condition tested, confidence 

intervals and test of close fit based on the SRMRu are more accurate than those based on the 

RMSEA. The latter fail in models involving a medium or large number of variables, and 

generally fail when data are non-normal. In fact, confidence intervals and test for the RMSEA 

only outperform those for the SRMR when the number of variables is small (p = 10), the 

degree of misfit is small (a one factor model is fitted to a model with two factors that 

correlate 0.9), and generally in small samples (N = 100, 200).  

 Our conclusions are somewhat limited by the conditions of this study. For instance, 

the accuracy of RMSEA CIs noticeably worsens from 10 to 30 observed variables, but we do 

not know at what model size they remain adequate, as we did not include conditions with 

between 10 and 30 variables in our study. In addition, only one type of misspecification was 

considered (misspecification of the interfactor correlations). To explore whether the results 

presented here would generalize to other setups we performed some additional simulation 
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studies where we misspecified confirmatory factor models by omitting cross-loadings. 

Results are presented as supplementary materials and are consistent with the results presented 

in this paper. This leads us to conjecture that holding effect size of misfit, sample size, degree 

of non-normality, and model size fixed, the accuracy of CIs for the SRMR and RMSEA does 

not depend on the source of misspecification (e.g. misspecified dimensionality, omitted cross 

loadings, etc. ). 

What do the simulation results inform us about the results obtained in our numerical 

example? Given our model size and our sample, it is likely that the estimated RMSEA is 

slightly larger than it should be and that its estimated CI is narrower than it should be. As a 

result, the RMSEA results incorrectly make the fit of our model appear poorer than what it is. 

In contrast, the unbiased estimate of the SRMR and its associated CI accurately convey the 

degree of misfit of our fitted model.   

Why do confidence intervals for the RMSEA fail in the setup considered in this 

paper? Because the RMSEA is based on the likelihood ratio (LR) test statistic and therefore it 

will fail whenever the asymptotic approximation to the empirical sampling distribution of the 

LR fails. The asymptotic approximation to the distribution of the likelihood ratio test is 

known to fail in correctly specified models with a large number of variables (Herzog, 

Boomsma, & Reinecke, 2007; Kenny & McCoach, 2003; Shi, Lee, & Terry, 2017) even 

when data is normally distributed. In addition, when data is non-normal, only the mean 

adjusted LR can be used to estimate the population RMSEA as no statistical theory exists for 

estimating the RMSEA using the mean and variance adjusted LR, which is known to yield 

better results than the mean adjusted LR (Maydeu-Olivares, 2017b). As a result, confidence 

intervals and tests for the RMSEA fail in models with large number of variables (probably 

over 15 or 20) particularly with non-normal data.  
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Fortunately, the results presented here show that assessing the degree of misfit of a 

SEM model can be safely assessed using the SRMR, even in large models and non-normal 

data. In closing, the use of the sample SRMR currently provided by most software programs 

is to be avoided as it overestimates the population SRMR and suggests that the model fits 

more poorly than it does.  
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Table 1. Population thresholds, skewness, kurtosis, RMSEA, SRMR, and CRMR 

Kur. Skew. Thresholds p ρ RMSEA SRMR CRMR

0.0 
 

0.0 
 

-1.64, -1.08, -0.52, 0.52, 1.08, 1.64 
 

10 0.9 0.042 0.021 0.023 
10 0.8 0.075 0.041 0.046
10 0.7 0.103 0.062 0.068 
30 0.9 0.032 0.022 0.023 
30 0.8 0.054 0.044 0.046
30 0.7 0.070 0.067 0.069
60 0.9 0.027 0.023 0.023
60 0.8 0.042 0.045 0.046 
60 0.7 0.054 0.068 0.069

3.3 
 

0.0 
 

-2.33, -1.64, -1.04, 1.04, 1.64, 2.33 
 

10 0.9 0.032 0.018 0.020
10 0.8 0.058 0.036 0.040
10 0.7 0.080 0.053 0.059 
30 0.9 0.026 0.019 0.020 
30 0.8 0.043 0.039 0.040
30 0.7 0.057 0.057 0.059
60 0.9 0.022 0.020 0.020
60 0.8 0.035 0.039 0.040 
60 0.7 0.045 0.058 0.059

3.3 
 

-2.0 
 

-2.33, -1.88, -1.55, -1.17, -0.84, -0.55 
 

10 0.9 0.035 0.020 0.022
10 0.8 0.063 0.039 0.043
10 0.7 0.086 0.057 0.063 
30 0.9 0.028 0.021 0.022 
30 0.8 0.046 0.042 0.043
30 0.7 0.061 0.062 0.064
60 0.9 0.023 0.022 0.022
60 0.8 0.037 0.043 0.043 
60 0.7 0.047 0.063 0.064
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Table 2. Population RMSEA and SRMR and average of RMSEA and SRMRu across replications 

Kur. Skew. ρ N 
p = 10 p = 30 p = 60 

RMSEA SRMRu RMSEA SRMRu RMSEA SRMRu 
POP NT ADF POP NT ADF POP NT ADF POP NT ADF POP NT ADF POP NT ADF 

 
0.0 

 
0.0 

0.9 
 

100 0.042 0.042 0.042 0.021 0.018 0.019 0.032 0.050 0.051 0.022 0.022 0.023 0.027 0.065 0.065 0.023 0.023 0.024 
200 0.042 0.040 0.040 0.021 0.019 0.019 0.032 0.037 0.037 0.022 0.022 0.022 0.027 0.038 0.037 0.023 0.023 0.023 
500 0.042 0.041 0.041 0.021 0.020 0.020 0.032 0.033 0.033 0.022 0.022 0.022 0.027 0.029 0.029 0.023 0.023 0.023 

1000 0.042 0.042 0.041 0.021 0.021 0.021 0.032 0.033 0.033 0.022 0.022 0.022 0.027 0.027 0.027 0.023 0.023 0.023 

0.8 
 

100 0.075 0.073 0.073 0.041 0.039 0.040 0.054 0.066 0.066 0.044 0.044 0.045 0.042 0.072 0.072 0.045 0.045 0.045 
200 0.075 0.074 0.074 0.041 0.041 0.041 0.054 0.057 0.057 0.044 0.045 0.045 0.042 0.050 0.050 0.045 0.045 0.045
500 0.075 0.075 0.075 0.041 0.041 0.041 0.054 0.055 0.054 0.044 0.045 0.045 0.042 0.044 0.043 0.045 0.045 0.045 

1000 0.075 0.075 0.075 0.041 0.041 0.041 0.054 0.054 0.054 0.044 0.045 0.045 0.042 0.043 0.043 0.045 0.045 0.045 

0.7 
 

100 0.103 0.101 0.101 0.062 0.061 0.061 0.070 0.080 0.080 0.067 0.066 0.067 0.054 0.080 0.079 0.068 0.067 0.067 
200 0.103 0.102 0.102 0.062 0.062 0.062 0.070 0.073 0.073 0.067 0.067 0.067 0.054 0.060 0.060 0.068 0.067 0.067 
500 0.103 0.103 0.102 0.062 0.062 0.062 0.070 0.071 0.071 0.067 0.067 0.067 0.054 0.055 0.055 0.068 0.068 0.068 

1000 0.103 0.103 0.103 0.062 0.062 0.062 0.070 0.071 0.071 0.067 0.067 0.067 0.054 0.054 0.054 0.068 0.068 0.068 

 
3.0 

 
0.0 

0.9 
 

100 0.032 0.058 0.039 0.018 0.028 0.019 0.026 0.068 0.050 0.019 0.035 0.023 0.022 0.079 0.065 0.020 0.036 0.024 
200 0.032 0.046 0.033 0.018 0.024 0.017 0.026 0.047 0.033 0.019 0.028 0.020 0.022 0.049 0.035 0.020 0.029 0.021 
500 0.032 0.038 0.031 0.018 0.021 0.017 0.026 0.035 0.027 0.019 0.024 0.020 0.022 0.033 0.024 0.020 0.024 0.020 

1000 0.032 0.036 0.032 0.018 0.020 0.018 0.026 0.031 0.027 0.019 0.022 0.020 0.022 0.027 0.023 0.020 0.022 0.020 

0.8 
 

100 0.058 0.075 0.060 0.036 0.041 0.035 0.043 0.075 0.061 0.039 0.048 0.040 0.035 0.083 0.070 0.039 0.049 0.041 
200 0.058 0.067 0.058 0.036 0.039 0.035 0.043 0.058 0.048 0.039 0.043 0.039 0.035 0.055 0.044 0.039 0.044 0.040
500 0.058 0.063 0.059 0.036 0.037 0.036 0.043 0.050 0.045 0.039 0.041 0.039 0.035 0.042 0.037 0.039 0.041 0.039 

1000 0.058 0.062 0.060 0.036 0.037 0.036 0.043 0.047 0.045 0.039 0.040 0.039 0.035 0.039 0.036 0.039 0.040 0.039 

0.7 
 

100 0.080 0.092 0.081 0.053 0.056 0.052 0.057 0.083 0.071 0.057 0.064 0.058 0.045 0.086 0.074 0.058 0.064 0.059 
200 0.080 0.087 0.081 0.053 0.055 0.053 0.057 0.069 0.061 0.057 0.061 0.058 0.045 0.061 0.052 0.058 0.061 0.058 
500 0.080 0.085 0.082 0.053 0.055 0.054 0.057 0.062 0.059 0.057 0.059 0.058 0.045 0.051 0.046 0.058 0.060 0.058 

1000 0.080 0.084 0.083 0.053 0.054 0.054 0.057 0.060 0.059 0.057 0.058 0.058 0.045 0.048 0.046 0.058 0.059 0.059 

 
3.0 

 
-2.0 

0.9 
 

100 0.035 0.098 0.048 0.020 0.049 0.023 0.028 0.106 0.064 0.021 0.057 0.026 0.023 0.121 0.086 0.022 0.059 0.028 
200 0.035 0.071 0.036 0.020 0.037 0.019 0.028 0.073 0.038 0.021 0.043 0.022 0.023 0.075 0.044 0.022 0.045 0.023 
500 0.035 0.052 0.033 0.020 0.028 0.019 0.028 0.049 0.029 0.021 0.032 0.021 0.023 0.048 0.027 0.022 0.033 0.022 

1000 0.035 0.045 0.034 0.020 0.024 0.019 0.028 0.040 0.028 0.021 0.027 0.021 0.023 0.037 0.024 0.022 0.028 0.022 

0.8 
 

100 0.063 0.108 0.066 0.039 0.059 0.038 0.046 0.110 0.072 0.042 0.068 0.044 0.037 0.121 0.088 0.043 0.069 0.045 
200 0.063 0.088 0.062 0.039 0.050 0.038 0.046 0.080 0.053 0.042 0.056 0.042 0.037 0.079 0.051 0.043 0.058 0.043 
500 0.063 0.073 0.062 0.039 0.044 0.039 0.046 0.061 0.047 0.042 0.048 0.042 0.037 0.055 0.039 0.043 0.049 0.042 

1000 0.063 0.068 0.063 0.039 0.042 0.039 0.046 0.054 0.047 0.042 0.045 0.042 0.037 0.046 0.037 0.043 0.046 0.043 

0.7 
 

100 0.086 0.119 0.085 0.057 0.071 0.055 0.061 0.114 0.079 0.062 0.081 0.062 0.047 0.122 0.090 0.063 0.082 0.063 
200 0.086 0.103 0.083 0.057 0.065 0.056 0.061 0.088 0.065 0.062 0.072 0.061 0.047 0.082 0.057 0.063 0.073 0.062 
500 0.086 0.093 0.085 0.057 0.060 0.057 0.061 0.072 0.061 0.062 0.066 0.062 0.047 0.061 0.048 0.063 0.067 0.062 

1000 0.086 0.089 0.085 0.057 0.059 0.057 0.061 0.066 0.061 0.062 0.064 0.062 0.047 0.054 0.047 0.063 0.065 0.062 

 
Notes: Shaded results indicate relative bias <|.10|.  
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Table 3. Coverage rates for 90% confidence intervals around the population RMSEA and SRMR 

Kur. Skew. ρ N 
p = 10 p = 30 p = 60 

NT ADF NT ADF NT ADF 
RMSEA SRMR RMSEA SRMR RMSEA SRMR RMSEA SRMR RMSEA SRMR RMSEA SRMR 

 
0.0 

 
0.0 

0.9 
 

100 0.92 0.69 0.92 0.75 0.40 0.75 0.40 0.84 0.00 0.77 0.00 0.92 
200 0.93 0.78 0.94 0.79 0.75 0.80 0.76 0.84 0.04 0.76 0.05 0.85 
500 0.88 0.85 0.88 0.85 0.83 0.83 0.85 0.84 0.64 0.79 0.68 0.81 

1000 0.86 0.86 0.86 0.86 0.83 0.86 0.83 0.86 0.75 0.83 0.77 0.84 

0.8 
 

100 0.86 0.83 0.87 0.84 0.50 0.80 0.51 0.84 0.00 0.80 0.00 0.86 
200 0.85 0.87 0.86 0.87 0.71 0.83 0.72 0.84 0.14 0.82 0.17 0.84 
500 0.82 0.88 0.83 0.88 0.75 0.86 0.76 0.86 0.63 0.87 0.67 0.87 

1000 0.83 0.87 0.83 0.87 0.74 0.89 0.75 0.89 0.64 0.88 0.65 0.88

0.7 
 

100 0.83 0.87 0.84 0.87 0.54 0.82 0.56 0.84 0.00 0.82 0.00 0.84 
200 0.83 0.90 0.84 0.90 0.69 0.86 0.71 0.85 0.25 0.85 0.31 0.86 
500 0.83 0.91 0.84 0.91 0.70 0.89 0.72 0.89 0.59 0.89 0.61 0.89 

1000 0.82 0.89 0.82 0.89 0.71 0.90 0.72 0.89 0.57 0.89 0.59 0.89 

3.3 0.0 

0.9 
 

100 0.70 0.74 0.92 0.96 0.01 0.15 0.33 0.93 0.00 0.01 0.00 0.99
200 0.72 0.68 0.93 0.79 0.06 0.23 0.74 0.90 0.00 0.02 0.06 0.98 
500 0.78 0.77 0.92 0.82 0.13 0.42 0.82 0.89 0.00 0.15 0.64 0.93 

1000 0.75 0.80 0.87 0.86 0.22 0.58 0.81 0.87 0.00 0.39 0.74 0.90 

0.8 
 

100 0.75 0.80 0.91 0.86 0.02 0.67 0.43 0.96 0.00 0.52 0.00 0.99 
200 0.77 0.85 0.90 0.90 0.14 0.73 0.73 0.92 0.00 0.64 0.14 0.95 
500 0.77 0.84 0.84 0.89 0.27 0.79 0.78 0.91 0.00 0.76 0.63 0.92 

1000 0.74 0.84 0.84 0.90 0.34 0.83 0.75 0.92 0.03 0.81 0.64 0.91

0.7 
 

100 0.78 0.86 0.89 0.90 0.06 0.82 0.47 0.95 0.00 0.83 0.00 0.96 
200 0.77 0.87 0.87 0.90 0.23 0.82 0.72 0.92 0.00 0.84 0.24 0.92 
500 0.77 0.87 0.85 0.91 0.37 0.85 0.72 0.92 0.05 0.83 0.60 0.93 

1000 0.75 0.86 0.81 0.90 0.42 0.86 0.71 0.94 0.11 0.85 0.55 0.92 

3.3 
 

-2.0 

0.9 
 

100 0.21 0.27 0.90 0.96 0.00 0.00 0.17 0.99 0.00 0.00 0.00 1.00
200 0.29 0.33 0.92 0.92 0.00 0.00 0.70 0.93 0.00 0.00 0.01 0.99 
500 0.41 0.48 0.94 0.82 0.00 0.00 0.86 0.91 0.00 0.00 0.64 0.97 

1000 0.52 0.58 0.87 0.84 0.00 0.05 0.86 0.90 0.00 0.00 0.79 0.92 

0.8 
 

100 0.33 0.60 0.91 0.89 0.00 0.05 0.30 0.98 0.00 0.00 0.00 1.00 
200 0.45 0.64 0.92 0.89 0.00 0.18 0.75 0.96 0.00 0.04 0.05 0.97 
500 0.60 0.74 0.87 0.89 0.01 0.45 0.80 0.91 0.00 0.31 0.71 0.93 

1000 0.65 0.76 0.86 0.90 0.05 0.62 0.79 0.93 0.00 0.53 0.70 0.92 

0.7 
 

100 0.50 0.75 0.91 0.89 0.00 0.43 0.43 0.97 0.00 0.27 0.00 0.99 
200 0.57 0.75 0.86 0.88 0.00 0.60 0.76 0.94 0.00 0.50 0.17 0.94 
500 0.66 0.78 0.84 0.91 0.06 0.70 0.77 0.93 0.00 0.70 0.71 0.94 

1000 0.66 0.78 0.82 0.91 0.19 0.75 0.72 0.95 0.00 0.72 0.64 0.93 

Notes: Shaded results indicate acceptable coverage (between ,85 and .95). 
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Table 4. Coverage rates for 95% confidence intervals around the population RMSEA and SRMR  

Kur. Skew. ρ N 
p = 10 p = 30 p = 60 

NT ADF NT ADF NT ADF 
RMSEA SRMR RMSEA SRMR RMSEA SRMR RMSEA SRMR RMSEA SRMR RMSEA SRMR 

 
0.0 

 
0.0 

0.9 
 

100 0.95 0.89 0.95 0.95 0.52 0.83 0.50 0.91 0.00 0.86 0.00 0.97 
200 0.96 0.84 0.97 0.83 0.83 0.86 0.85 0.88 0.09 0.83 0.10 0.93 
500 0.93 0.90 0.93 0.90 0.90 0.90 0.91 0.91 0.72 0.87 0.76 0.89 

1000 0.92 0.92 0.92 0.93 0.89 0.92 0.90 0.92 0.83 0.89 0.85 0.89 

0.8 
 

100 0.95 0.89 0.95 0.91 0.61 0.88 0.60 0.92 0.00 0.86 0.00 0.91 
200 0.93 0.93 0.93 0.93 0.79 0.90 0.80 0.90 0.21 0.90 0.24 0.90 
500 0.90 0.93 0.90 0.93 0.84 0.92 0.85 0.93 0.72 0.93 0.75 0.93 

1000 0.90 0.94 0.90 0.94 0.84 0.94 0.84 0.94 0.73 0.94 0.73 0.93

0.7 
 

100 0.89 0.92 0.90 0.92 0.63 0.90 0.64 0.90 0.00 0.88 0.00 0.90 
200 0.91 0.94 0.91 0.94 0.76 0.91 0.78 0.91 0.34 0.92 0.39 0.92 
500 0.90 0.95 0.90 0.94 0.79 0.94 0.80 0.94 0.68 0.94 0.71 0.94 

1000 0.89 0.94 0.89 0.94 0.78 0.95 0.79 0.95 0.67 0.94 0.67 0.94 

3.3 0.0 

0.9 
 

100 0.79 0.84 0.96 0.99 0.01 0.24 0.45 0.99 0.00 0.02 0.00 1.00
200 0.81 0.77 0.96 0.97 0.08 0.32 0.83 0.94 0.00 0.05 0.10 0.99 
500 0.84 0.84 0.95 0.87 0.20 0.52 0.90 0.94 0.00 0.22 0.74 0.97 

1000 0.84 0.87 0.92 0.92 0.30 0.69 0.88 0.93 0.00 0.48 0.82 0.96 

0.8 
 

100 0.82 0.89 0.95 0.92 0.05 0.78 0.54 0.99 0.00 0.66 0.00 1.00 
200 0.85 0.91 0.96 0.94 0.19 0.81 0.81 0.96 0.00 0.76 0.22 0.98 
500 0.85 0.91 0.91 0.94 0.37 0.86 0.84 0.94 0.01 0.85 0.73 0.96 

1000 0.83 0.92 0.91 0.95 0.43 0.89 0.83 0.96 0.06 0.87 0.73 0.97

0.7 
 

100 0.86 0.92 0.95 0.94 0.10 0.90 0.59 0.97 0.00 0.91 0.00 0.98 
200 0.84 0.92 0.92 0.94 0.31 0.89 0.79 0.95 0.00 0.90 0.33 0.96 
500 0.86 0.94 0.92 0.97 0.46 0.91 0.81 0.97 0.07 0.90 0.69 0.97 

1000 0.82 0.91 0.89 0.95 0.51 0.92 0.78 0.97 0.15 0.91 0.65 0.96 

3.3 
 

-2.0 

0.9 
 

100 0.30 0.38 0.94 0.99 0.00 0.00 0.26 1.00 0.00 0.00 0.00 1.00
200 0.38 0.43 0.96 0.98 0.00 0.00 0.80 0.95 0.00 0.00 0.02 1.00 
500 0.51 0.58 0.97 0.87 0.00 0.00 0.92 0.96 0.00 0.00 0.76 0.99 

1000 0.59 0.66 0.93 0.90 0.00 0.08 0.93 0.95 0.00 0.00 0.87 0.96 

0.8 
 

100 0.44 0.72 0.96 0.98 0.00 0.08 0.41 0.99 0.00 0.00 0.00 1.00 
200 0.54 0.73 0.96 0.91 0.00 0.26 0.84 0.98 0.00 0.06 0.09 0.99 
500 0.70 0.83 0.93 0.94 0.01 0.55 0.87 0.96 0.00 0.42 0.79 0.96 

1000 0.74 0.83 0.92 0.95 0.07 0.71 0.86 0.97 0.00 0.61 0.78 0.96 

0.7 
 

100 0.57 0.85 0.95 0.93 0.00 0.58 0.55 0.99 0.00 0.39 0.00 1.00 
200 0.66 0.85 0.92 0.93 0.00 0.71 0.84 0.97 0.00 0.64 0.25 0.97 
500 0.74 0.87 0.91 0.96 0.08 0.80 0.83 0.97 0.00 0.80 0.78 0.96 

1000 0.74 0.85 0.89 0.94 0.25 0.84 0.81 0.97 0.00 0.83 0.73 0.97 

Notes: Shaded results indicate acceptable coverage (between .90 and .99). 
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Table 5: Test of close fit results. Empirical rejection rates at a 5% significance level of a test that the RMSEA and SRMR equal their population values 

Kur. Skew. ρ N 
p = 10 p = 30 p = 60 

RMSEA SRMR RMSEA SRMR RMSEA SRMR 
POP NT ADF POP NT ADF POP NT ADF POP NT ADF POP NT ADF POP NT ADF 

 
0.0 

 
0.0 

0.9 
 

100 0.042 0.08 0.08 0.021 0.11 0.05 0.032 0.62 0.61 0.022 0.17 0.09 0.027 1.00 0.14 0.023 1.00 0.03 
200 0.042 0.07 0.06 0.021 0.16 0.17 0.032 0.24 0.22 0.022 0.14 0.12 0.027 0.96 0.17 0.023 0.95 0.07 
500 0.042 0.07 0.07 0.021 0.10 0.10 0.032 0.14 0.12 0.022 0.11 0.09 0.027 0.36 0.13 0.023 0.32 0.11 

1000 0.042 0.08 0.08 0.021 0.08 0.08 0.032 0.11 0.10 0.022 0.08 0.08 0.027 0.21 0.11 0.023 0.18 0.11 

0.8 
 

100 0.075 0.10 0.09 0.041 0.11 0.10 0.054 0.52 0.51 0.044 0.12 0.08 0.042 1.00 0.14 0.045 1.00 0.09 
200 0.075 0.08 0.08 0.041 0.07 0.07 0.054 0.27 0.25 0.044 0.10 0.10 0.042 0.87 0.10 0.045 0.84 0.10 
500 0.075 0.09 0.08 0.041 0.07 0.07 0.054 0.18 0.16 0.044 0.08 0.08 0.042 0.32 0.07 0.045 0.27 0.07 

1000 0.075 0.09 0.09 0.041 0.06 0.07 0.054 0.16 0.14 0.044 0.06 0.06 0.042 0.24 0.07 0.045 0.21 0.07 

0.7 
 

100 0.103 0.10 0.10 0.062 0.08 0.08 0.070 0.48 0.45 0.067 0.10 0.10 0.054 1.00 0.12 0.068 1.00 0.10 
200 0.103 0.10 0.09 0.062 0.06 0.06 0.070 0.26 0.23 0.067 0.09 0.09 0.054 0.75 0.09 0.068 0.70 0.08
500 0.103 0.09 0.08 0.062 0.05 0.06 0.070 0.20 0.18 0.067 0.06 0.06 0.054 0.31 0.06 0.068 0.27 0.06 

1000 0.103 0.10 0.10 0.062 0.06 0.06 0.070 0.17 0.15 0.067 0.05 0.06 0.054 0.26 0.07 0.068 0.22 0.06 

 
3.0 

 
0.0 

0.9 
 

100 0.032 0.31 0.08 0.018 0.16 0.01 0.026 1.00 0.68 0.019 0.76 0.01 0.022 1.00 0.98 0.020 1.00 0.00 
200 0.032 0.28 0.07 0.018 0.24 0.03 0.026 0.95 0.27 0.019 0.68 0.06 0.022 1.00 0.95 0.020 0.95 0.01 
500 0.032 0.23 0.08 0.018 0.16 0.13 0.026 0.87 0.15 0.019 0.48 0.06 0.022 1.00 0.78 0.020 0.36 0.03 

1000 0.032 0.22 0.09 0.018 0.13 0.09 0.026 0.78 0.16 0.019 0.31 0.07 0.022 1.00 0.52 0.020 0.25 0.04 

0.8 
 

100 0.058 0.26 0.10 0.036 0.11 0.08 0.043 0.98 0.59 0.039 0.22 0.01 0.035 1.00 0.34 0.039 1.00 0.00 
200 0.058 0.21 0.07 0.036 0.09 0.06 0.043 0.87 0.26 0.039 0.19 0.04 0.035 1.00 0.24 0.039 0.87 0.02 
500 0.058 0.20 0.10 0.036 0.09 0.06 0.043 0.73 0.19 0.039 0.14 0.06 0.035 1.00 0.15 0.039 0.36 0.04 

1000 0.058 0.22 0.12 0.036 0.08 0.05 0.043 0.66 0.22 0.039 0.11 0.04 0.035 0.97 0.13 0.039 0.34 0.03 

0.7 
 

100 0.080 0.21 0.09 0.053 0.08 0.06 0.057 0.95 0.54 0.057 0.10 0.03 0.045 1.00 0.09 0.058 1.00 0.02 
200 0.080 0.20 0.09 0.053 0.09 0.06 0.057 0.78 0.27 0.057 0.11 0.05 0.045 1.00 0.10 0.058 0.78 0.04 
500 0.080 0.20 0.10 0.053 0.06 0.03 0.057 0.63 0.25 0.057 0.09 0.03 0.045 0.95 0.10 0.058 0.36 0.03 

1000 0.080 0.22 0.15 0.053 0.09 0.05 0.057 0.58 0.26 0.057 0.08 0.03 0.045 0.89 0.10 0.058 0.40 0.04 

 
3.0 

 
-2.0 

0.9 
 

100 0.035 0.80 0.11 0.020 0.62 0.01 0.028 1.00 0.83 0.021 1.00 0.00 0.023 1.00 1.00 0.022 1.00 0.00 
200 0.035 0.72 0.08 0.020 0.57 0.02 0.028 1.00 0.31 0.021 1.00 0.05 0.023 1.00 1.00 0.022 0.99 0.00 
500 0.035 0.59 0.06 0.020 0.42 0.13 0.028 1.00 0.11 0.021 1.00 0.05 0.023 1.00 1.00 0.022 0.36 0.01 

1000 0.035 0.48 0.07 0.020 0.34 0.10 0.028 1.00 0.09 0.021 0.92 0.05 0.023 1.00 1.00 0.022 0.17 0.04 

0.8 
 

100 0.063 0.68 0.09 0.039 0.28 0.02 0.046 1.00 0.71 0.042 0.92 0.01 0.037 1.00 1.00 0.043 1.00 0.00 
200 0.063 0.55 0.08 0.039 0.27 0.09 0.046 1.00 0.25 0.042 0.74 0.02 0.037 1.00 0.94 0.043 0.95 0.01 
500 0.063 0.39 0.07 0.039 0.18 0.06 0.046 1.00 0.14 0.042 0.45 0.04 0.037 1.00 0.59 0.043 0.26 0.04 

1000 0.063 0.32 0.08 0.039 0.17 0.05 0.046 0.95 0.12 0.042 0.29 0.03 0.037 1.00 0.40 0.043 0.18 0.04 

0.7 
 

100 0.086 0.51 0.09 0.057 0.15 0.07 0.061 1.00 0.58 0.062 0.42 0.01 0.047 1.00 0.61 0.063 1.00 0.00 
200 0.086 0.41 0.07 0.057 0.15 0.07 0.061 1.00 0.22 0.062 0.29 0.03 0.047 1.00 0.36 0.063 0.84 0.03 
500 0.086 0.30 0.07 0.057 0.13 0.04 0.061 0.94 0.14 0.062 0.20 0.04 0.047 1.00 0.20 0.063 0.20 0.04

1000 0.086 0.26 0.08 0.057 0.15 0.06 0.061 0.81 0.14 0.062 0.16 0.03 0.047 1.00 0.17 0.063 0.15 0.03 

Notes: Shaded results indicate acceptable rejection rates (between .01 and .10). 

 


